{ "id": "math/9811191", "version": "v1", "published": "1998-11-05T00:00:00.000Z", "updated": "1998-11-05T00:00:00.000Z", "title": "Computing zeta functions over finite fields", "authors": [ "Daqing Wan" ], "categories": [ "math.NT", "math.AG" ], "abstract": "In this paper, we give an overview of the various general methods in computing the zeta function of an algebraic variety defined over a finite field, with an emphasis on computing the reduction modulo $p^m$ of the zeta function of a hypersurface, where $p$ is the characteristic of the finite field. In particular, this applies to the problem of counting rational points of an algebraic variety over a finite field.", "revisions": [ { "version": "v1", "updated": "1998-11-05T00:00:00.000Z" } ], "analyses": { "keywords": [ "finite field", "computing zeta functions", "counting rational points", "reduction modulo", "general methods" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "1998math.....11191W" } } }