{ "id": "math/9811185", "version": "v1", "published": "1998-11-01T00:00:00.000Z", "updated": "1998-11-01T00:00:00.000Z", "title": "The polynomial X^2+Y^4 captures its primes", "authors": [ "John Friedlander", "Henryk Iwaniec" ], "comment": "96 pages, published version, abstract added in migration", "journal": "Ann. of Math. (2) 148 (1998), no. 3, 945-1040", "categories": [ "math.NT" ], "abstract": "This article proves that there are infinitely many primes of the form a^2 + b^4, in fact getting the asymptotic formula. The main result is that \\sum_{a^2 + b^4\\le x} \\Lambda(a^2 + b^4) = 4\\pi^{-1}\\kappa x^{3/4} (1 + O(\\log\\log x / \\log x)) where a, b run over positive integers and \\kappa = \\int^1_0 (1 - t^4)^{1/2} dt = \\Gamma(1/4)^2 /6\\sqrt{2\\pi}. Here of course, \\Lambda denotes the von Mangoldt function and \\Gamma the Euler gamma function.", "revisions": [ { "version": "v1", "updated": "1998-11-01T00:00:00.000Z" } ], "analyses": { "keywords": [ "polynomial", "euler gamma function", "von mangoldt function", "asymptotic formula", "main result" ], "tags": [ "journal article" ], "publication": { "publisher": "Princeton University and the Institute for Advanced Study", "journal": "Ann. Math." }, "note": { "typesetting": "TeX", "pages": 96, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "1998math.....11185F" } } }