{ "id": "math/9811170", "version": "v2", "published": "1998-11-29T07:08:43.000Z", "updated": "1999-05-02T06:14:33.000Z", "title": "Indistinguishability of Percolation Clusters", "authors": [ "Russell Lyons", "Oded Schramm" ], "comment": "To appear in Ann. Probab", "journal": "AnnalsProbab.27:1809-1836,1999", "categories": [ "math.PR", "math-ph", "math.MP" ], "abstract": "We show that when percolation produces infinitely many infinite clusters on a Cayley graph, one cannot distinguish the clusters from each other by any invariantly defined property. This implies that uniqueness of the infinite cluster is equivalent to non-decay of connectivity (a.k.a. long-range order). We then derive applications concerning uniqueness in Kazhdan groups and in wreath products, and inequalities for $p_u$.", "revisions": [ { "version": "v2", "updated": "1999-05-02T06:14:33.000Z" } ], "analyses": { "subjects": [ "82B43", "60B99", "60K35", "60D05" ], "keywords": [ "percolation clusters", "indistinguishability", "infinite cluster", "cayley graph", "long-range order" ], "tags": [ "journal article" ], "publication": { "doi": "10.1214/aop/1022677549" }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "inspire": 492588, "adsabs": "1998math.....11170L" } } }