{ "id": "math/9811145", "version": "v1", "published": "1998-11-24T18:56:31.000Z", "updated": "1998-11-24T18:56:31.000Z", "title": "Uniqueness of unconditional bases in c_0-products", "authors": [ "Peter G. Casazza", "Nigel J. Kalton" ], "comment": "23 pages; to appear: Studia Math", "categories": [ "math.FA" ], "abstract": "We give counterexamples to a conjecture of Bourgain, Casazza, Lindenstrauss and Tzafriri that if X has a unique unconditional basis (up to permutation) then so does c_0(X). In particular, we show that for Tsirelson's space T, every unconditional basis of c_0(T) must be equivalent to a subsequence of the canonical basis but c_0(T) still fails to have a unique unconditional basis. We also give some positive results including a simpler proof that c_0(l_1)has a unique unconditional basis.", "revisions": [ { "version": "v1", "updated": "1998-11-24T18:56:31.000Z" } ], "analyses": { "subjects": [ "46B15", "46B07" ], "keywords": [ "unique unconditional basis", "unconditional bases", "uniqueness", "tsirelsons space", "simpler proof" ], "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "1998math.....11145C" } } }