{ "id": "math/9811116", "version": "v1", "published": "1998-11-19T16:22:49.000Z", "updated": "1998-11-19T16:22:49.000Z", "title": "Immersed spheres and finite type of Donaldson invariants", "authors": [ "Wojciech Wieczorek" ], "comment": "19 pages, LaTeX file", "categories": [ "math.DG" ], "abstract": "A smooth four manifold is of finite type $r$ if its Donaldson invariant satisfies D((x^2-4)^r)=0. We prove that every simply connected manifold is of finite type by using the structure of Donaldson invariants in the presence of immersed spheres. More precisely we prove that if a manifold X contains an immersed sphere with $p$ positive double points and a non-negative self-intersection $a$, then it is of finite type with r = [(2p+2-a)/4].", "revisions": [ { "version": "v1", "updated": "1998-11-19T16:22:49.000Z" } ], "analyses": { "keywords": [ "finite type", "immersed sphere", "donaldson invariant satisfies", "positive double points", "non-negative self-intersection" ], "note": { "typesetting": "LaTeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "1998math.....11116W" } } }