{ "id": "math/9811053", "version": "v1", "published": "1998-11-09T09:42:37.000Z", "updated": "1998-11-09T09:42:37.000Z", "title": "The GIT-equivalence for $G$-line bundles", "authors": [ "Nicolas Ressayre" ], "comment": "36 pages, 4 figures", "categories": [ "math.AG" ], "abstract": "Let $X$ be a projective variety with an action of a reductive group $G$. Each ample $G$-line bundle $L$ on $X$ defines an open subset $X^{\\rm ss}(L)$ of semi-stable points. Following Dolgachev and Hu, define a GIT-class as the set of algebraic equivalence classes of $L'$s with fixed $X^{\\rm ss}(L)$. We show that the GIT-classes are the relative interiors of rational polyhedral convex cones, which form a fan in the $G$-ample cone. We also study the corresponding variations of quotients $X^{\\rm ss}(L)//G$. This sharpens results of Thaddeus and Dolgachev-Hu.", "revisions": [ { "version": "v1", "updated": "1998-11-09T09:42:37.000Z" } ], "analyses": { "keywords": [ "line bundle", "git-equivalence", "rational polyhedral convex cones", "algebraic equivalence classes", "open subset" ], "note": { "typesetting": "TeX", "pages": 36, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "1998math.....11053R" } } }