{ "id": "math/9811043", "version": "v1", "published": "1998-11-07T23:55:10.000Z", "updated": "1998-11-07T23:55:10.000Z", "title": "On the density of rational points on elliptic fibrations", "authors": [ "F. Bogomolov", "Yu. Tschinkel" ], "comment": "10 pages, LaTeX", "categories": [ "math.AG" ], "abstract": "Let $V_1$ be the Fano threefold given as a hypersurface of degree 6 in $P(1,1,1,2,3)$ (over a number field $K$). Then there exists a finite extension $K'/K$ such that the set of $K'$-rational points of $X$ is Zariski dense.", "revisions": [ { "version": "v1", "updated": "1998-11-07T23:55:10.000Z" } ], "analyses": { "keywords": [ "rational points", "elliptic fibrations", "fano threefold", "number field", "finite extension" ], "note": { "typesetting": "LaTeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "1998math.....11043B" } } }