{ "id": "math/9810172", "version": "v2", "published": "1998-10-29T21:16:39.000Z", "updated": "1998-11-19T19:50:38.000Z", "title": "Volume of Riemannian manifolds, geometric inequalities, and homotopy theory", "authors": [ "Mikhail G. Katz", "Alexander I. Suciu" ], "comment": "25 pages, LaTeX2e, 3 figures. To appear in the Rothenberg Festschrift, Contemporary Math", "journal": "Tel Aviv Topology Conference: Rothenberg Festschrift (1998), 113-136, Contemp. Math., vol. 231, Amer. Math. Soc., Providence, RI, 1999", "categories": [ "math.DG", "math.AT" ], "abstract": "We outline the current state of knowledge regarding geometric inequalities of systolic type, and prove new results, including systolic freedom in dimension 4. Namely, every compact, orientable, smooth 4-manifold X admits metrics of arbitrarily small volume such that every orientable, immersed surface of smaller than unit area is necessarily null-homologous in X.", "revisions": [ { "version": "v2", "updated": "1998-11-19T19:50:38.000Z" } ], "analyses": { "subjects": [ "53C23", "55Q15" ], "keywords": [ "riemannian manifolds", "homotopy theory", "knowledge regarding geometric inequalities", "current state", "arbitrarily small volume" ], "tags": [ "journal article" ], "note": { "typesetting": "LaTeX", "pages": 25, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "1998math.....10172K" } } }