{ "id": "math/9810116", "version": "v1", "published": "1998-10-19T02:00:13.000Z", "updated": "1998-10-19T02:00:13.000Z", "title": "Omega Admissible Theory II: New metrics on determinant of cohomology And Their applications to moduli spaces of punctured Riemann surfaces", "authors": [ "Lin Weng" ], "comment": "AMS-TEX", "categories": [ "math.AG", "math.DG" ], "abstract": "For singular metrics, there is no Quillen metric formalism on cohomology determinant. In this paper, we develop an admissible theory, with which the arithmetic Deligne-Riemann-Roch isometry can be established for singular metrics. As an application, we first study Weil-Petersson metrics and Takhtajan-Zograf metrics on moduli spaces of punctured Riemann surfaces, and then give a more geometric interpretation of our determinant metrics in terms of Selberg zeta functions. We end this paper by proposing an arithmetic factorization for Weil-Petersson metrics, cuspidal metrics and Selberg zeta functions.", "revisions": [ { "version": "v1", "updated": "1998-10-19T02:00:13.000Z" } ], "analyses": { "keywords": [ "punctured riemann surfaces", "omega admissible theory", "moduli spaces", "determinant", "selberg zeta functions" ], "note": { "typesetting": "AMS-TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "1998math.....10116W" } } }