{ "id": "math/9809092", "version": "v1", "published": "1998-09-17T09:35:05.000Z", "updated": "1998-09-17T09:35:05.000Z", "title": "Graphs, flags and partitions", "authors": [ "Jonathan Fine" ], "comment": "12 pages, LaTeX 2e, no figures", "categories": [ "math.CO" ], "abstract": "This paper defines, for each graph $G$, a flag vector $fG$. The flag vectors of the graphs on $n$ vertices span a space whose dimension is $p(n)$, the number of partitions on $n$. The analogy with convex polytopes indicates that the linear inequalities satisfied by $fG$ may be both interesting and accessible. Such would provide inequalities both sharp and subtle on the combinatorial structure of $G$. These may be related to Ramsey theory.", "revisions": [ { "version": "v1", "updated": "1998-09-17T09:35:05.000Z" } ], "analyses": { "subjects": [ "52B05" ], "keywords": [ "partitions", "flag vector", "ramsey theory", "paper defines", "convex polytopes" ], "note": { "typesetting": "LaTeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "1998math......9092F" } } }