{ "id": "math/9807147", "version": "v1", "published": "1998-07-27T04:29:56.000Z", "updated": "1998-07-27T04:29:56.000Z", "title": "Compact Operators via the Berezin Transform", "authors": [ "Sheldon Axler", "Dechao Zheng" ], "comment": "15 pages. To appear in Indiana University Mathematics Journal. For more information, see http://math.sfsu.edu/axler/CompactBerezin.html", "journal": "Indiana Univ. Math. J. 47 (1998), 387-400", "categories": [ "math.FA" ], "abstract": "In this paper we prove that if S equals a finite sum of finite products of Toeplitz operators on the Bergman space of the unit disk, then S is compact if and only if the Berezin transform of S equals 0 on the boundary of the disk. This result is new even when S equals a single Toeplitz operator. Our main result can be used to prove, via a unified approach, several previously known results about compact Toeplitz operators, compact Hankel operators, and appropriate products of these operators.", "revisions": [ { "version": "v1", "updated": "1998-07-27T04:29:56.000Z" } ], "analyses": { "subjects": [ "47B35", "46E20" ], "keywords": [ "berezin transform", "compact operators", "compact hankel operators", "compact toeplitz operators", "single toeplitz operator" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "1998math......7147A" } } }