{ "id": "math/9807035", "version": "v2", "published": "1998-07-08T15:24:20.000Z", "updated": "2000-05-24T04:20:20.000Z", "title": "Deformation of spherical CR structures and the universal Picard variety", "authors": [ "Jih-Hsin Cheng", "I-Hsun Tsai" ], "comment": "57 pages", "journal": "Commun. Anal. and Geom., 8(2000), 301-346", "categories": [ "math.DG", "math.AG" ], "abstract": "We study deformation of spherical $CR$ circle bundles over Riemann surfaces of genus > 1. There is a one to one correspondence between such deformation space and the so-called universal Picard variety. Our differential-geometric proof of the structure and dimension of the unramified universal Picard variety has its own interest, and our theory has its counterpart in the Teichmuller theory.", "revisions": [ { "version": "v2", "updated": "2000-05-24T04:20:20.000Z" } ], "analyses": { "subjects": [ "32G07", "32G15" ], "keywords": [ "spherical cr structures", "unramified universal picard variety", "teichmuller theory", "circle bundles", "study deformation" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 57, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "1998math......7035C" } } }