{ "id": "math/9806081", "version": "v1", "published": "1998-06-15T12:49:27.000Z", "updated": "1998-06-15T12:49:27.000Z", "title": "Upper bounds for the first eigenvalue of the Dirac operator on surfaces", "authors": [ "Ilka Agricola", "Thomas Friedrich" ], "comment": "Latex2.09, 23 pages", "doi": "10.1016/S0393-0440(98)00032-1", "categories": [ "math.DG" ], "abstract": "In this paper we will prove new extrinsic upper bounds for the eigenvalues of the Dirac operator on an isometrically immersed surface $M^2 \\hookrightarrow {\\Bbb R}^3$ as well as intrinsic bounds for 2-dimensional compact manifolds of genus zero and genus one. Moreover, we compare the different estimates of the eigenvalue of the Dirac operator for special families of metrics.", "revisions": [ { "version": "v1", "updated": "1998-06-15T12:49:27.000Z" } ], "analyses": { "subjects": [ "58G25", "53A05" ], "keywords": [ "dirac operator", "first eigenvalue", "extrinsic upper bounds", "compact manifolds", "intrinsic bounds" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable" } } }