{ "id": "math/9805148", "version": "v2", "published": "1998-05-15T00:00:00.000Z", "updated": "2000-01-10T03:34:28.000Z", "title": "Strongly meager sets do not form an ideal", "authors": [ "Tomek Bartoszynski", "Saharon Shelah" ], "categories": [ "math.LO" ], "abstract": "A set X subseteq R is strongly meager if for every measure zero set H, X+H not= R. Let SM denote the collection of strongly meager sets. We show that assuming CH, SM is not an ideal.", "revisions": [ { "version": "v2", "updated": "2000-01-10T03:34:28.000Z" } ], "analyses": { "keywords": [ "strongly meager sets", "measure zero set", "sm denote", "collection" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "1998math......5148B" } } }