{ "id": "math/9805023", "version": "v1", "published": "1998-05-06T14:02:00.000Z", "updated": "1998-05-06T14:02:00.000Z", "title": "q-Laguerre polynomials and big q-Bessel functions and their orthogonality relations", "authors": [ "Nicola Ciccoli", "Erik Koelink", "Tom H. Koornwinder" ], "comment": "20 pages", "journal": "Methods Appl. Anal. 6 (1999), 109-127", "categories": [ "math.CA", "math.QA" ], "abstract": "The q-Laguerre polynomials correspond to an indetermined moment problem. For explicit discrete non-N-extremal measures corresponding to Ramanujan's ${}_1\\psi_1$-summation we complement the orthogonal q-Laguerre polynomials into an explicit orthogonal basis for the corresponding L^2-space. The dual orthogonal system consists of so-called big q-Bessel functions, which can be obtained as a rigorous limit of the orthogonal system of big q-Jacobi polynomials. Interpretations on the SU(1,1) and E(2) quantum groups are discussed.", "revisions": [ { "version": "v1", "updated": "1998-05-06T14:02:00.000Z" } ], "analyses": { "subjects": [ "33D45", "33D80" ], "keywords": [ "big q-bessel functions", "q-laguerre polynomials", "orthogonality relations", "dual orthogonal system consists", "explicit discrete non-n-extremal measures corresponding" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "1998math......5023C" } } }