{ "id": "math/9804051", "version": "v1", "published": "1998-04-08T20:51:38.000Z", "updated": "1998-04-08T20:51:38.000Z", "title": "Solubility of Systems of Quadratic Forms", "authors": [ "Greg Martin" ], "comment": "4 pages", "journal": "Bull. London Math. Soc. 29 (1997), 385-388", "categories": [ "math.NT" ], "abstract": "We derive an upper bound for the least number of variables needed to guarantee that a system of t quadratic forms (t>=2) over a field F has a nontrivial zero. In particular, if F is a local field, then 2t^2+3 variables insure the existence of a nontrivial zero (2t^2+1 if t is even), while if F=Q_p with p>=11, then 2t^2-2t+5 variables suffice (2t^2-2t+1 if 3 divides t). The improvement lies in a more efficient use of information on the solubility of pairs and triplets of quadratic forms, and the arguments are completely elementary.", "revisions": [ { "version": "v1", "updated": "1998-04-08T20:51:38.000Z" } ], "analyses": { "subjects": [ "11D72" ], "keywords": [ "quadratic forms", "solubility", "nontrivial zero", "variables insure", "local field" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "1998math......4051M" } } }