{ "id": "math/9804023", "version": "v1", "published": "1998-04-06T06:55:13.000Z", "updated": "1998-04-06T06:55:13.000Z", "title": "Another low-technology estimate in convex geometry", "authors": [ "Greg Kuperberg" ], "comment": "11 pages", "journal": "Math. Sci. Res. Inst. Publ. 34 (1999), 117-121", "categories": [ "math.MG" ], "abstract": "We give a short argument that for some C > 0, every n-dimensional Banach ball K admits a 256-round subquotient of dimension at least C n/(log n). This is a weak version of Milman's quotient of subspace theorem, which lacks the logarithmic factor.", "revisions": [ { "version": "v1", "updated": "1998-04-06T06:55:13.000Z" } ], "analyses": { "keywords": [ "convex geometry", "low-technology estimate", "n-dimensional banach ball", "short argument", "weak version" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "1998math......4023K" } } }