{ "id": "math/9801154", "version": "v1", "published": "1998-01-15T00:00:00.000Z", "updated": "1998-01-15T00:00:00.000Z", "title": "A model with no magic sets", "authors": [ "Krzysztof Ciesielski", "Saharon Shelah" ], "categories": [ "math.LO" ], "abstract": "We will prove that there exists a model of ZFC+``c= omega_2'' in which every M subseteq R of cardinality less than continuum c is meager, and such that for every X subseteq R of cardinality c there exists a continuous function f:R-> R with f[X]=[0,1]. In particular in this model there is no magic set, i.e., a set M subseteq R such that the equation f[M]=g[M] implies f=g for every continuous nowhere constant functions f,g:R-> R .", "revisions": [ { "version": "v1", "updated": "1998-01-15T00:00:00.000Z" } ], "analyses": { "keywords": [ "magic set", "cardinality", "constant functions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "1998math......1154C" } } }