{ "id": "math/9712207", "version": "v1", "published": "1997-11-29T23:29:37.000Z", "updated": "1997-11-29T23:29:37.000Z", "title": "Another proof of the alternating sign matrix conjecture", "authors": [ "Greg Kuperberg" ], "comment": "10 pages", "journal": "Internat. Math. Res. Notices, 1996(3):139-150, 1996", "categories": [ "math.CO" ], "abstract": "Robbins conjectured, and Zeilberger recently proved, that there are 1!4!7!...(3n-2)!/n!/(n+1)!/.../(2n-1)! alternating sign matrices of order n. We give a new proof of this result using an analysis of the six-vertex state model (also called square ice) based on the Yang-Baxter equation.", "revisions": [ { "version": "v1", "updated": "1997-11-29T23:29:37.000Z" } ], "analyses": { "keywords": [ "alternating sign matrix conjecture", "six-vertex state model", "alternating sign matrices", "square ice", "yang-baxter equation" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "1997math.....12207K" } } }