{ "id": "math/9711208", "version": "v1", "published": "1997-11-26T00:00:00.000Z", "updated": "1997-11-26T00:00:00.000Z", "title": "Reflexivity of the automorphism and isometry groups of the suspension of $B(H)$", "authors": [ "Lajos Molnar", "M. Gyory" ], "categories": [ "math.FA" ], "abstract": "The aim of this paper is to show that the automorphism and isometry groups of the suspension of $B(H)$, $H$ being a separable infinite dimensional Hilbert space, are algebraically reflexive. This means that every local automorphism, respectively local surjective isometry of $C_0(\\mathbb R)\\otimes B(H)$ is an automorphism, respectively a surjective isometry.", "revisions": [ { "version": "v1", "updated": "1997-11-26T00:00:00.000Z" } ], "analyses": { "subjects": [ "46L40", "47B48", "46E40", "46L80" ], "keywords": [ "isometry groups", "suspension", "reflexivity", "separable infinite dimensional hilbert space", "respectively local surjective isometry" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "1997math.....11208M" } } }