{ "id": "math/9707226", "version": "v1", "published": "1997-07-15T00:00:00.000Z", "updated": "1997-07-15T00:00:00.000Z", "title": "Erdős and Renyi conjecture", "authors": [ "Saharon Shelah" ], "categories": [ "math.CO", "math.LO" ], "abstract": "Affirming a conjecture of Erd\\H{o}s and Renyi we prove that for any (real number) c_1>0 for some c_2>0, if a graph G has no c_1(log n) nodes on which the graph is complete or edgeless (i.e. G exemplifies |G| not-> (c_1 log n)^2_2) then G has at least 2^{c_2n} non-isomorphic (induced) subgraphs.", "revisions": [ { "version": "v1", "updated": "1997-07-15T00:00:00.000Z" } ], "analyses": { "keywords": [ "renyi conjecture", "real number", "exemplifies" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "1997math......7226S" } } }