{ "id": "math/9706225", "version": "v1", "published": "1997-06-15T00:00:00.000Z", "updated": "1997-06-15T00:00:00.000Z", "title": "Stationary sets and infinitary logic", "authors": [ "Saharon Shelah", "Jouko Väänänen" ], "categories": [ "math.LO" ], "abstract": "Let K^0_lambda be the class of structures < lambda,<,A>, where A subseteq lambda is disjoint from a club, and let K^1_lambda be the class of structures < lambda,<,A>, where A subseteq lambda contains a club. We prove that if lambda = lambda^{< kappa} is regular, then no sentence of L_{lambda^+ kappa} separates K^0_lambda and K^1_lambda. On the other hand, we prove that if lambda = mu^+, mu = mu^{< mu}, and a forcing axiom holds (and aleph_1^L= aleph_1 if mu = aleph_0), then there is a sentence of L_{lambda lambda} which separates K^0_lambda and K^1_lambda .", "revisions": [ { "version": "v1", "updated": "1997-06-15T00:00:00.000Z" } ], "analyses": { "keywords": [ "infinitary logic", "stationary sets", "subseteq lambda contains", "structures", "forcing axiom holds" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "1997math......6225S" } } }