{ "id": "math/9706223", "version": "v1", "published": "1997-06-15T00:00:00.000Z", "updated": "1997-06-15T00:00:00.000Z", "title": "Covering a function on the plane by two continuous functions on an uncountable square - the consistency", "authors": [ "Mariusz Rabus", "Saharon Shelah" ], "categories": [ "math.LO" ], "abstract": "It is consistent that for every function f:R x R-> R there is an uncountable set A subseteq R and two continuous functions f_0,f_1:D(A)-> R such that f(alpha, beta) in {f_0(alpha, beta),f_1(alpha, beta)} for every (alpha, beta) in A^2, alpha not = beta .", "revisions": [ { "version": "v1", "updated": "1997-06-15T00:00:00.000Z" } ], "analyses": { "keywords": [ "continuous functions", "uncountable square", "consistency" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "1997math......6223R" } } }