{ "id": "math/9703201", "version": "v1", "published": "1997-03-10T22:26:04.000Z", "updated": "1997-03-10T22:26:04.000Z", "title": "Maximal subgroups of direct products", "authors": [ "Jacques Thévenaz" ], "comment": "Plain TeX file, 8 pages", "categories": [ "math.GR" ], "abstract": "We determine all maximal subgroups of the direct product $\\sc G^n$ of $\\sc n$ copies of a group~$\\sc G$. If $\\sc G$ is finite, we show that the number of maximal subgroups of~$\\sc G^n$ is a quadratic function of~$\\sc n$ if $\\sc G$ is perfect, but grows exponentially otherwise. We~deduce a theorem of Wiegold about the growth behaviour of the number of generators of~$\\sc G^n$.", "revisions": [ { "version": "v1", "updated": "1997-03-10T22:26:04.000Z" } ], "analyses": { "keywords": [ "maximal subgroups", "direct product", "quadratic function", "growth behaviour", "generators" ], "note": { "typesetting": "Plain TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "1997math......3201T" } } }