{ "id": "math/9612229", "version": "v1", "published": "1996-12-17T00:00:00.000Z", "updated": "1996-12-17T00:00:00.000Z", "title": "Small generators of number fields", "authors": [ "Wolfgang M. Ruppert" ], "categories": [ "math.NT" ], "abstract": "This is a revised version of ANT-0045. If K is a number field of degree n with discriminant D, if K=Q(a) then H(a)>c(n)|D|^(1/(2n-2)) where H(a) is the height of the minimal polynomial of a. We ask if one can always find a generator a of K such that d(n)|D|^(1/(2n-2))>H(a) holds. The answer is yes for real quadratic fields.", "revisions": [ { "version": "v1", "updated": "1996-12-17T00:00:00.000Z" } ], "analyses": { "keywords": [ "number field", "small generators", "real quadratic fields", "minimal polynomial", "discriminant" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "1996math.....12229R" } } }