{ "id": "math/9610213", "version": "v1", "published": "1996-10-14T00:00:00.000Z", "updated": "1996-10-14T00:00:00.000Z", "title": "A counterexample to a question of Haydon, Odell and Rosenthal", "authors": [ "George Androulakis" ], "categories": [ "math.FA" ], "abstract": "We give an example of a compact metric space $K$, an open dense subset $U$ of $K$, and a sequence $(f_n)$ in $C(K)$ which is pointwise convergent to a non-continuous function on $K$, such that for every $u \\in U$ there exists $n \\in \\N$ with $f_n(u)=f_m(u)$ for all $m \\geq n$, yet $(f_n)$ is equivalent to the unit vector basis of the James quasi-reflexive space of order 1. Thus $c_0$ does not embed isomorphically in the closed linear span $[f_n]$ of $(f_n)$. This answers in negative a question asked by H. Haydon, E. Odell and H. Rosenthal.", "revisions": [ { "version": "v1", "updated": "1996-10-14T00:00:00.000Z" } ], "analyses": { "subjects": [ "46B25" ], "keywords": [ "counterexample", "compact metric space", "open dense subset", "unit vector basis", "james quasi-reflexive space" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "1996math.....10213A" } } }