{ "id": "math/9609212", "version": "v1", "published": "1996-09-04T00:00:00.000Z", "updated": "1996-09-04T00:00:00.000Z", "title": "The space of rational maps on P^1", "authors": [ "Joseph H. Silverman" ], "journal": "Duke Math. J. 94 (1998), 41--77", "categories": [ "math.DS", "math.NT" ], "abstract": "The set of morphisms $\\f:\\PP^1\\to\\PP^1$ of degree $d$ is parametrized by an affine open subset $\\Rat_d$ of $\\PP^{2d+1}$. We consider the action of~$\\SL_2$ on $\\Rat_d$ induced by the {\\it conjugation action\\/} of $\\SL_2$ on rational maps; that is, $f\\in\\SL_2$ acts on~$\\f$ via $\\f^f=f^{-1}\\circ\\f\\circ f$. The quotient space $\\M_d=\\Rat_d/\\SL_2$ arises very naturally in the study of discrete dynamical systems on~$\\PP^1$. We prove that~$\\M_d$ exists as an affine integral scheme over~$\\ZZ$, that $\\M_2$ is isomorphic to~$\\AA^2_\\ZZ$, and that the natural completion of~$\\M_2$ obtained using geometric invariant theory is isomorphic to~$\\PP^2_\\ZZ$. These results, which generalize results of Milnor over~$\\CC$, should be useful for studying the arithmetic properties of dynamical systems.", "revisions": [ { "version": "v1", "updated": "1996-09-04T00:00:00.000Z" } ], "analyses": { "keywords": [ "rational maps", "geometric invariant theory", "affine integral scheme", "affine open subset", "quotient space" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "1996math......9212S" } } }