{ "id": "math/9606209", "version": "v1", "published": "1996-06-05T00:00:00.000Z", "updated": "1996-06-05T00:00:00.000Z", "title": "Concerning the Bourgain $ell_1$ index of a Banach space", "authors": [ "Robert Judd", "Edward Odell" ], "categories": [ "math.FA" ], "abstract": "A well known argument of James yields that if a Banach space $X$ contains $\\ell_1^n$'s uniformly then $X$ contains $\\ell_1^n$'s almost isometrically. In the first half of the paper we extend this idea to the ordinal $\\ell_1$-indices of Bourgain. In the second half we use our results to calculate the $\\ell_1$-index of certain Banach spaces. Furthermore we show that the $\\ell_1$-index of a separable Banach space not containing $\\ell_1$ must be of the form $\\omega^{\\alpha}$ for some countable ordinal $\\alpha$.", "revisions": [ { "version": "v1", "updated": "1996-06-05T00:00:00.000Z" } ], "analyses": { "subjects": [ "46B20" ], "keywords": [ "separable banach space", "second half", "james yields", "concerning", "first half" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "1996math......6209J" } } }