{ "id": "math/9603219", "version": "v1", "published": "1996-03-15T00:00:00.000Z", "updated": "1996-03-15T00:00:00.000Z", "title": "The consistency of 2^{aleph_{0}}> aleph_{omega} + I(aleph_{2})=I(aleph_{omega})", "authors": [ "Martin Gilchrist", "Saharon Shelah" ], "categories": [ "math.LO" ], "abstract": "An omega-coloring is a pair where f:[B]^{2} ---> omega. The set B is the field of f and denoted Fld(f). Let f,g be omega-colorings. We say that f realizes the coloring g if there is a one-one function k:Fld(g) ---> Fld(f) such that for all {x,y}, {u,v} in dom(g) we have f({k(x),k(y)}) not= f({k(u),k(v)}) => g({x,y}) not= g({u,v}). We write f~g if f realizes g and g realizes f. We call the ~-classes of omega-colorings with finite fields identities. We say that an identity I is of size r if |Fld(f)|=r for some/all f in I. For a cardinal kappa and f:[kappa]^2 ---> omega we define I(f) to be the collection of identities realized by f and I (kappa) to be bigcap {I(f)| f:[kappa]^2 ---> omega}. We show that, if ZFC is consistent then ZFC + 2^{aleph_0}> aleph_omega + I(aleph_2)=I(aleph_omega) is consistent.", "revisions": [ { "version": "v1", "updated": "1996-03-15T00:00:00.000Z" } ], "analyses": { "keywords": [ "consistency", "finite fields identities", "cardinal kappa", "consistent", "one-one function" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "1996math......3219G" } } }