{ "id": "math/9512227", "version": "v1", "published": "1995-12-15T00:00:00.000Z", "updated": "1995-12-15T00:00:00.000Z", "title": "Set theory without choice: not everything on cofinality is possible", "authors": [ "Saharon Shelah" ], "journal": "Arch. Math. Logic 36 (1997), 81-125", "categories": [ "math.LO" ], "abstract": "We prove (ZF+DC) e.g. : if mu =|H(mu)| then mu^+ is regular non measurable. This is in contrast with the results for mu = aleph_{omega} on measurability see Apter Magidor [ApMg]", "revisions": [ { "version": "v1", "updated": "1995-12-15T00:00:00.000Z" } ], "analyses": { "keywords": [ "set theory", "cofinality", "apter magidor", "measurability" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "1995math.....12227S" } } }