{ "id": "math/9506221", "version": "v1", "published": "1995-06-12T00:00:00.000Z", "updated": "1995-06-12T00:00:00.000Z", "title": "Floer homologies for Lagrangian intersections and instantons", "authors": [ "Ronnie Lee", "Weiping Li" ], "categories": [ "math.GT" ], "abstract": "In 1985 lectures at MSRI, A. Casson introduced an interesting integer valued invariant for any oriented integral homology 3-sphere Y via beautiful constructions on representation spaces (see [1] for an exposition). The Casson invariant \\lambda(Y) is roughly defined by measuring the oriented number of irreducible representations of the fundamental group \\pi_1(Y) in SU(2). Such an invariant generalized the Rohlin invariant and gives surprising corollaries in low dimensional topology.", "revisions": [ { "version": "v1", "updated": "1995-06-12T00:00:00.000Z" } ], "analyses": { "keywords": [ "lagrangian intersections", "floer homologies", "instantons", "low dimensional topology", "interesting integer valued invariant" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }