{ "id": "math/9501221", "version": "v1", "published": "1995-01-15T00:00:00.000Z", "updated": "1995-01-15T00:00:00.000Z", "title": "Convergence in homogeneous random graphs", "authors": [ "Tomasz Ɓuczak", "Saharon Shelah" ], "journal": "Random Structures Algorithms 6 (1995), 371--391", "categories": [ "math.LO", "math.CO" ], "abstract": "For a sequence p=(p(1),p(2), ...) let G(n,p) denote the random graph with vertex set {1,2, ...,n} in which two vertices i, j are adjacent with probability p(|i-j|), independently for each pair. We study how the convergence of probabilities of first order properties of G(n,p), can be affected by the behaviour of p and the strength of the language we use.", "revisions": [ { "version": "v1", "updated": "1995-01-15T00:00:00.000Z" } ], "analyses": { "keywords": [ "homogeneous random graphs", "convergence", "first order properties", "probability", "vertex set" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "1995math......1221L" } } }