{ "id": "math/9410212", "version": "v1", "published": "1994-10-01T00:00:00.000Z", "updated": "1994-10-01T00:00:00.000Z", "title": "Mean values of Dedekind sums", "authors": [ "J. Brian Conrey", "Eric Fransen", "Robert Klein", "Clayton Scott" ], "categories": [ "math.NT" ], "abstract": "For a positive integer k and an arbitrary integer h, the Dedekind sum s(h,k) was first studied by Dedekind because of the prominent role it plays in the transformation theory of the Dedekind eta-function, which is a modular form of weight 1/2 for the full modular group SL_2(Z). There is an extensive literature about the Dedekind sums. Rademacher [8] has written an introductory book on the subject.", "revisions": [ { "version": "v1", "updated": "1994-10-01T00:00:00.000Z" } ], "analyses": { "keywords": [ "dedekind sum", "mean values", "full modular group", "arbitrary integer", "dedekind eta-function" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }