{ "id": "math/9405211", "version": "v1", "published": "1994-05-24T16:23:15.000Z", "updated": "1994-05-24T16:23:15.000Z", "title": "Some properties of space of compact operators", "authors": [ "Narcisse Randrianantoanina" ], "categories": [ "math.FA" ], "abstract": "Let $X$ be a separable Banach space, $Y$ be a Banach space and $\\Lambda$ be a subset of the dual group of a given compact metrizable abelian group. We prove that if $X^*$ and $Y$ have the type I-$\\Lambda$-RNP (resp. type II-$\\Lambda$-RNP) then $K(X,Y)$ has the type I-$\\Lambda$-RNP (resp. type II-$\\Lambda$-RNP) provided $L(X,Y)=K(X,Y)$. Some corollaries are then presented as well as results conserning the separability assumption on $X$. Similar results for the NearRNP and the WeakRNP are also presented.", "revisions": [ { "version": "v1", "updated": "1994-05-24T16:23:15.000Z" } ], "analyses": { "keywords": [ "compact operators", "properties", "compact metrizable abelian group", "dual group", "separable banach space" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "1994math......5211R" } } }