{ "id": "math/9404204", "version": "v1", "published": "1994-04-10T00:00:00.000Z", "updated": "1994-04-10T00:00:00.000Z", "title": "Blowing up the power of a singular cardinal", "authors": [ "Moti Gitik" ], "categories": [ "math.LO" ], "abstract": "Suppose that kappa is a singular cardinal of cofinality omega and GCH holds. Assume that for every n= alpha^{+n} is unbounded in kappa.Then there is a cardinal preserving extension satisfying 2^kappa=kappa^++ and GCH below kappa. By a result of W. Mitchell and the author the assumptions are optimal.", "revisions": [ { "version": "v1", "updated": "1994-04-10T00:00:00.000Z" } ], "analyses": { "keywords": [ "singular cardinal", "gch holds", "cofinality omega", "cardinal preserving extension satisfying", "assumptions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "1994math......4204G" } } }