{ "id": "math/9307203", "version": "v1", "published": "1993-07-08T00:00:00.000Z", "updated": "1993-07-08T00:00:00.000Z", "title": "On weighted transplantation and multipliers for Laguerre expansions", "authors": [ "Krzysztof Stempak", "Walter Trebels" ], "categories": [ "math.CA" ], "abstract": "Using the standard square--function method (based on the Poisson semigroup), multiplier conditions of H\\\"ormander type are derived for Laguerre expansions in $L^p$--spaces with power weights in the $A_p$-range; this result can be interpreted as an ``upper end point'' multiplier criterion which is fairly good for $p$ near $1$ or near $\\infty $. A weighted generalization of Kanjin's \\cite{kan} transplantation theorem allows to obtain a ``lower end point'' multiplier criterion whence by interpolation nearly ``optimal'' multiplier criteria (in dependance of $p$, the order of the Laguerre polynomial, the weight).", "revisions": [ { "version": "v1", "updated": "1993-07-08T00:00:00.000Z" } ], "analyses": { "keywords": [ "laguerre expansions", "weighted transplantation", "multiplier criterion", "upper end point", "standard square-function method" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "1993math......7203S" } } }