{ "id": "math/9304211", "version": "v1", "published": "1993-04-01T00:00:00.000Z", "updated": "1993-04-01T00:00:00.000Z", "title": "On the distribution of sums of residues", "authors": [ "Jerrold R. Griggs" ], "comment": "5 pages", "journal": "Bull. Amer. Math. Soc. (N.S.) 28 (1993) 329-333", "categories": [ "math.NT", "math.CO" ], "abstract": "We generalize and solve the $\\roman{mod}\\,q$ analogue of a problem of Littlewood and Offord, raised by Vaughan and Wooley, concerning the distribution of the $2^n$ sums of the form $\\sum_{i=1}^n\\varepsilon_ia_i$, where each $\\varepsilon_i$ is $0$ or $1$. For all $q$, $n$, $k$ we determine the maximum, over all reduced residues $a_i$ and all sets $P$ consisting of $k$ arbitrary residues, of the number of these sums that belong to $P$.", "revisions": [ { "version": "v1", "updated": "1993-04-01T00:00:00.000Z" } ], "analyses": { "keywords": [ "distribution", "arbitrary residues", "littlewood", "reduced residues" ], "tags": [ "journal article", "expository article" ], "publication": { "publisher": "AMS", "journal": "Bull. Amer. Math. Soc." }, "note": { "typesetting": "TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "1993math......4211G" } } }