{ "id": "math/9212203", "version": "v1", "published": "1992-12-04T21:58:37.000Z", "updated": "1992-12-04T21:58:37.000Z", "title": "Operators preserving orthogonality are isometries", "authors": [ "Alexander Koldobsky" ], "categories": [ "math.FA" ], "abstract": "Let $E$ be a real Banach space. For $x,y \\in E,$ we follow R.James in saying that $x$ is orthogonal to $y$ if $\\|x+\\alpha y\\|\\geq \\|x\\|$ for every $\\alpha \\in R$. We prove that every operator from $E$ into itself preserving orthogonality is an isometry multiplied by a constant.", "revisions": [ { "version": "v1", "updated": "1992-12-04T21:58:37.000Z" } ], "analyses": { "keywords": [ "operators preserving orthogonality", "real banach space" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "1992math.....12203K" } } }