{ "id": "math/9210206", "version": "v1", "published": "1992-10-08T15:45:24.000Z", "updated": "1992-10-08T15:45:24.000Z", "title": "Interpolation of compact operators by the methods of Calderón and Gustavsson-Peetre", "authors": [ "Michael Cwikel", "Nigel J. Kalton" ], "categories": [ "math.FA" ], "abstract": "Let $ X=(X_0,X_1)$ and $ Y=(Y_0,Y_1)$ be Banach couples and suppose $T: X\\to Y$ is a linear operator such that $T:X_0\\to Y_0$ is compact. We consider the question whether the operator $T:[X_0,X_1]_{\\theta}\\to [Y_0,Y_1]_{\\theta}$ is compact and show a positive answer under a variety of conditions. For example it suffices that $X_0$ be a UMD-space or that $X_0$ is reflexive and there is a Banach space so that $X_0=[W,X_1]_{\\alpha}$ for some $0<\\alpha<1.$", "revisions": [ { "version": "v1", "updated": "1992-10-08T15:45:24.000Z" } ], "analyses": { "keywords": [ "compact operators", "interpolation", "gustavsson-peetre", "banach couples", "banach space" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "1992math.....10206C" } } }