{ "id": "math/9207208", "version": "v1", "published": "1992-07-21T18:55:45.000Z", "updated": "1992-07-21T18:55:45.000Z", "title": "On Uniform Homeomorphisms of the Unit Spheres of Certain Banach Lattices", "authors": [ "Fouad Chaatit" ], "categories": [ "math.FA" ], "abstract": "We prove that if X is an infinite dimensional Banach lattice with a weak unit then there exists a probability space (Omega, Sigma,mu) so that the unit sphere S(L_1(Omega, Sigma, mu) is uniformly homeomorphic to the unit sphere S(X) if and only if X does not contain l_{infty}^n's uniformly.", "revisions": [ { "version": "v1", "updated": "1992-07-21T18:55:45.000Z" } ], "analyses": { "keywords": [ "unit sphere", "uniform homeomorphisms", "infinite dimensional banach lattice", "weak unit", "probability space" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "1992math......7208C" } } }