{ "id": "math/9201282", "version": "v1", "published": "1991-04-12T00:00:00.000Z", "updated": "1991-04-12T00:00:00.000Z", "title": "The Hausdorff dimension of the boundary of the Mandelbrot set and Julia sets", "authors": [ "Mitsuhiro Shishikura" ], "categories": [ "math.DS" ], "abstract": "It is shown that the boundary of the Mandelbrot set $M$ has Hausdorff dimension two and that for a generic $c \\in \\bM$, the Julia set of $z \\mapsto z^2+c$ also has Hausdorff dimension two. The proof is based on the study of the bifurcation of parabolic periodic points.", "revisions": [ { "version": "v1", "updated": "1991-04-12T00:00:00.000Z" } ], "analyses": { "keywords": [ "hausdorff dimension", "julia set", "mandelbrot set", "parabolic periodic points" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }