{ "id": "math/9201203", "version": "v1", "published": "1989-10-26T14:59:00.000Z", "updated": "1989-10-26T14:59:00.000Z", "title": "Convex bodies with few faces", "authors": [ "Keith Ball", "Alain Pajor" ], "categories": [ "math.MG", "math.FA" ], "abstract": "It is proved that if $u_1,\\ldots, u_n$ are vectors in ${\\Bbb R}^k, k\\le n, 1 \\le p < \\infty$ and $$r = ({1\\over k} \\sum ^n_1 |u_i|^p)^{1\\over p}$$ then the volume of the symmetric convex body whose boundary functionals are $\\pm u_1,\\ldots, \\pm u_n$, is bounded from below as $$|\\{ x\\in {\\Bbb R}^k\\colon \\ |\\langle x,u_i\\rangle | \\le 1 \\ \\hbox{for every} \\ i\\}|^{1\\over k} \\ge {1\\over \\sqrt{\\rho}r}.$$ An application to number theory is stated.", "revisions": [ { "version": "v1", "updated": "1989-10-26T14:59:00.000Z" } ], "analyses": { "subjects": [ "52A20", "10E05" ], "keywords": [ "symmetric convex body", "boundary functionals", "number theory", "application" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }