{ "id": "math/0703907", "version": "v1", "published": "2007-03-30T06:24:05.000Z", "updated": "2007-03-30T06:24:05.000Z", "title": "Characterizing integers among rational numbers with a universal-existential formula", "authors": [ "Bjorn Poonen" ], "comment": "6 pages", "categories": [ "math.NT", "math.LO" ], "abstract": "We prove that Z in definable in Q by a formula with 2 universal quantifiers followed by 7 existential quantifiers. It follows that there is no algorithm for deciding, given an algebraic family of Q-morphisms, whether there exists one that is surjective on rational points. We also give a formula, again with universal quantifiers followed by existential quantifiers, that in any number field defines the ring of integers.", "revisions": [ { "version": "v1", "updated": "2007-03-30T06:24:05.000Z" } ], "analyses": { "subjects": [ "11U05", "11R52" ], "keywords": [ "rational numbers", "universal-existential formula", "characterizing integers", "universal quantifiers", "existential quantifiers" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007math......3907P" } } }