{ "id": "math/0703873", "version": "v1", "published": "2007-03-29T08:31:08.000Z", "updated": "2007-03-29T08:31:08.000Z", "title": "A weighted Moser-Trudinger inequality and its relation to the Caffarelli-Kohn-Nirenberg inequalities in two space dimensions", "authors": [ "Jean Dolbeault", "Maria J. Esteban", "Gabriella Tarantello" ], "journal": "Annali della Scuola Normale Superiore di Pisa 7 (2008) 313-341", "categories": [ "math.AP" ], "abstract": "We first prove a weighted inequality of Moser-Trudinger type depending on a parameter, in the two-dimensional Euclidean space. The inequality holds for radial functions if the parameter is larger than -1. Without symmetry assumption, it holds if and only if the parameter is in the interval (-1,0]. The inequality gives us some insight on the symmetry breaking phenomenon for the extremal functions of the Hardy-Sobolev inequality, as established by Caffarelli-Kohn-Nirenberg, in two space dimensions. In fact, for suitable sets of parameters (asymptotically sharp) we prove symmetry or symmetry breaking by means of a blow-up method. In this way, the weighted Moser-Trudinger inequality appears as a limit case of the Hardy-Sobolev inequality.", "revisions": [ { "version": "v1", "updated": "2007-03-29T08:31:08.000Z" } ], "analyses": { "subjects": [ "26D10", "46E35", "58E35" ], "keywords": [ "space dimensions", "caffarelli-kohn-nirenberg inequalities", "hardy-sobolev inequality", "two-dimensional euclidean space", "weighted moser-trudinger inequality appears" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007math......3873D" } } }