{ "id": "math/0703741", "version": "v3", "published": "2007-03-25T21:16:02.000Z", "updated": "2007-09-21T16:46:15.000Z", "title": "A dynamical characterization of Poisson-Dirichlet distributions", "authors": [ "Louis-Pierre Arguin" ], "comment": "8 pages; final version accepted for publication", "journal": "Electr. Comm. Prob. 12 (2007) 283-290", "categories": [ "math.PR" ], "abstract": "We show that a slight modification of a theorem of Ruzmaikina and Aizenman on competing particle systems on the real line leads to a characterization of Poisson-Dirichlet distributions $PD(a,0)$. Precisely, let $s$ be a proper random mass-partition i.e. a random sequence $(s_i, i\\in\\N)$ such that $s_1\\geq s_2\\geq ...$ and $\\sum_i s_i=1$ a.s. Consider ${W_i}_{i\\in\\N}$, an iid sequence of positive random variables with a density and such that $E[W^\\lambda]$ is finite for all $\\lambda\\in\\R$. It is shown that if the law of $s$ is invariant under a random multiplicative shift $s_i W_i$ of the atoms followed by a renormalization, then it must be a mixture of Poisson-Dirichlet distribution $PD(a,0)$, $a\\in (0,1)$.", "revisions": [ { "version": "v3", "updated": "2007-09-21T16:46:15.000Z" } ], "analyses": { "subjects": [ "60G55", "60K35" ], "keywords": [ "poisson-dirichlet distribution", "dynamical characterization", "proper random mass-partition", "positive random variables", "iid sequence" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007math......3741A" } } }