{ "id": "math/0703678", "version": "v2", "published": "2007-03-22T19:00:51.000Z", "updated": "2008-09-11T15:36:10.000Z", "title": "Desingularization of quasi-excellent schemes in characteristic zero", "authors": [ "Michael Temkin" ], "comment": "35 pages, revised version", "journal": "Advances in Mathematics 219 (2008), pp. 488-522", "doi": "10.1016/j.aim.2008.05.006", "categories": [ "math.AG" ], "abstract": "Grothendieck proved in EGA IV that if any integral scheme of finite type over a locally noetherian scheme X admits a desingularization, then X is quasi-excellent, and conjectured that the converse is probably true. We prove this conjecture for noetherian schemes of characteristic zero. Namely, starting with the resolution of singularities for algebraic varieties of characteristic zero, we prove the resolution of singularities for noetherian quasi-excellent Q-schemes.", "revisions": [ { "version": "v2", "updated": "2008-09-11T15:36:10.000Z" } ], "analyses": { "keywords": [ "characteristic zero", "quasi-excellent schemes", "desingularization", "noetherian quasi-excellent q-schemes", "integral scheme" ], "tags": [ "journal article" ], "publication": { "publisher": "Elsevier", "journal": "Adv. Math." }, "note": { "typesetting": "TeX", "pages": 35, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007math......3678T" } } }