{ "id": "math/0703676", "version": "v1", "published": "2007-03-22T18:17:12.000Z", "updated": "2007-03-22T18:17:12.000Z", "title": "Garaev's Inequality in finite fields not of prime order", "authors": [ "Nets Hawk Katz", "Chun-Yen Shen" ], "comment": "8 pages", "categories": [ "math.NT", "math.CA" ], "abstract": "We prove a version of Garaev's sum product theorem in the set of finite fields with non-prime order. Because of the presence of subfields, this seems to require some hypotheses on the set. We work under a condition analogous to having Hausdorff dimension less than 1/2. Under these conditions, we obtain a sum-product theorem with exponent 49/48.", "revisions": [ { "version": "v1", "updated": "2007-03-22T18:17:12.000Z" } ], "analyses": { "subjects": [ "11T99", "05D99" ], "keywords": [ "finite fields", "garaevs inequality", "garaevs sum product theorem", "sum-product theorem", "non-prime order" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007math......3676H" } } }