{ "id": "math/0703546", "version": "v1", "published": "2007-03-19T10:47:16.000Z", "updated": "2007-03-19T10:47:16.000Z", "title": "Quantum Hilbert matrices and orthogonal polynomials", "authors": [ "Jorgen Ellegaard Andersen", "Christian Berg" ], "comment": "10 pages", "categories": [ "math.CA" ], "abstract": "Using the notion of quantum integers associated with a complex number $q\\neq 0$, we define the quantum Hilbert matrix and various extensions. They are Hankel matrices corresponding to certain little $q$-Jacobi polynomials when $|q|<1$, and for the special value $q=(1-\\sqrt{5})/(1+\\sqrt{5})$ they are closely related to Hankel matrices of reciprocal Fibonacci numbers called Filbert matrices. We find a formula for the entries of the inverse quantum Hilbert matrix.", "revisions": [ { "version": "v1", "updated": "2007-03-19T10:47:16.000Z" } ], "analyses": { "subjects": [ "33D45", "11B39" ], "keywords": [ "quantum hilbert matrices", "orthogonal polynomials", "hankel matrices", "inverse quantum hilbert matrix", "reciprocal fibonacci numbers" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007math......3546E" } } }