{ "id": "math/0703540", "version": "v3", "published": "2007-03-19T06:03:08.000Z", "updated": "2010-06-16T06:59:12.000Z", "title": "Cluster characters for triangulated 2-Calabi--Yau categories", "authors": [ "Yann Palu" ], "comment": "21 pages. The numberings now coincide with those of the published version", "journal": "Annales de l'Institut Fourier Tome 58, 6 (2008) 2221-2248", "categories": [ "math.RT", "math.CT", "math.RA" ], "abstract": "Starting from an arbitrary cluster-tilting object $T$ in a 2-Calabi--Yau category over an algebraically closed field, as in the setting of Keller and Reiten, we define, for each object $L$, a fraction $X(T,L)$ using a formula proposed by Caldero and Keller. We show that the map taking $L$ to $X(T,L)$ is a cluster character, i.e. that it satisfies a certain multiplication formula. We deduce that it induces a bijection, in the finite and the acyclic case, between the indecomposable rigid objects of the cluster category and the cluster variables, which confirms a conjecture of Caldero and Keller.", "revisions": [ { "version": "v3", "updated": "2010-06-16T06:59:12.000Z" } ], "analyses": { "keywords": [ "cluster character", "cluster variables", "arbitrary cluster-tilting object", "acyclic case" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007math......3540P" } } }