{ "id": "math/0703504", "version": "v2", "published": "2007-03-16T22:11:27.000Z", "updated": "2007-10-11T12:50:27.000Z", "title": "Ubiquity of simplices in subsets of vector spaces over finite fields", "authors": [ "Derrick Hart", "Alex Iosevich" ], "comment": "10 pages", "categories": [ "math.CA", "math.CO" ], "abstract": "We prove that a sufficiently large subset of the $d$-dimensional vector space over a finite field with $q$ elements, $ {\\Bbb F}_q^d$, contains a copy of every $k$-simplex. Fourier analytic methods, Kloosterman sums, and bootstrapping play an important role.", "revisions": [ { "version": "v2", "updated": "2007-10-11T12:50:27.000Z" } ], "analyses": { "keywords": [ "finite field", "dimensional vector space", "fourier analytic methods", "sufficiently large subset", "kloosterman sums" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007math......3504H" } } }